

ver2 201

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804

Owner of the declaration:
Program operator:
Publisher:
Declaration number:
Registration number:
ECO Platform reference number:
Issue date:
Valid to:

CSK Stålindustri A/S The Norwegian EPD Foundation The Norwegian EPD Foundation NEPD-2693-1395-EN NEPD-2693-1395-EN

CE-Mærket stål komponenter CE Marked steel components

European average supply

CSK STEEL

CSK Stålindustri A/S

22.02.2021 22.02.2026

General information

Product

CE-Mærket stål komponenter Beams UNP-UPE-HEA-HEB-IPE-HEM

Program operator

 The Norwegian EPD Foundation

 Post Box 5250 Majorstuen, 0303 Oslo, Norway

 Phone:
 (+47) 23 08 80 00

 e-mail:
 post@epd-norge.no

Declaration number

NEPD-2693-1395-EN

ECO Platform reference number

Product Category Rules

EN 15804:2012 + A1:2013 serves as core PCR NPCR 013:2019 Part B for Steel and aluminium construction products

Statement of liability

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit

Declared unit with options (A1-A4, C1-C4, D): 1kg of steel, cradle-to-gate A1-A3 with options

Functional unit

Verification

The CEN Norm EN 15804 serves as the core PCR. Independent verification of the declaration and data, according to ISO14025:2010

internal

Third party verifier:

external

Ole MUTverser

Ole M. K. Iversen, LCA.no AS Independent verifier approved by EPD Norway

Owner of the declaration

CSK Stålindustri A/S Contact person: Phone: e-mail:

Manufacturer

CSK Stålindustri A/S Industrivej 7, DK-770 Phone: +45 25 24 66 36 e-mail: jpf@csk.dk

Jens Peter Frimor

+45 25 24 66 36

jpf@csk.dk

Place of production

Denmark, Thisted Latvia, Tukums

Management system

EN ISO 9001 EN ISO 14001 BS/EN 1090

Organisation number

20216883

Issue date

22.02.2021

Valid to

22.02.2026

Year of study

2020

Comparability

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

The EPD has been worked out by

Michael M. Jenssen, Asplan Viak AS

Michael M. Jemm Casplan viak

Approved

Håkon Hauan

Managing Director of EPD-Norway

Product

About CSK Steel

CSK Steel is a specialized global steel manufacturer driven by close relations with our customers. CSK Steel is certified to supply CE marked steel structures for the European market in all Execution Classes (EXC1-EXC4).

Our quality assurance system is based on ISO 3834, and we are certified according to 1090-1. External quality audits are performed on an ongoing basis to ensure that our certification is always valid and up-to-date.

At CSK Steel we strive to always offer - and deliver - high-quality steel structures and service, ensured by the continuous development and improvement of our quality assurance system and policies.

We are also certified according to international standards for occupational health and safety DS/OHSAS 18001:2007 / ISO 45001:2018. Our environmental management system is certified according to ISO 14001:2015.

Product Variation

The declared product is produced by CSK in Denmark and Latvia and the results are a weighted average of the two production units; environmental impact varies <10% between locations for most impact categories.

Product description

CE marked steel components are structural steel beams (UNP-UPE-HEA-HEB-IPE-HEM) manufactured by CSK per customer specification. Incoming hot-rolled profiles are first sand blasted, then cut and welded to the desired shape. Products are then surface treated before transportation to building site.

Technical data

Dimensions: IPE 80-600, HEA/B/M 100-600, UNP/UPE 80-400, L 40-200, L 65x50 -200x150, T 30-140 and wide steels:160-500, t=5-40. Steel grade ≤ S355. EN 10025 and EN1090-2 standards are applied.

Product specification

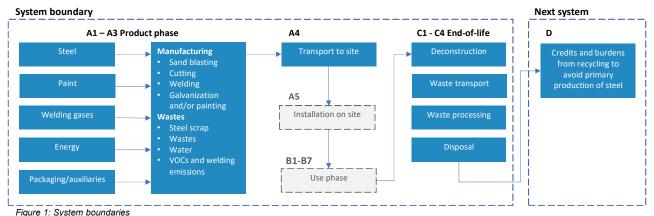
Materials	kg	%
Alloyed steel	0,93 - 0,99	93-99
Zinc	0 - 0,06	0 - 6
Paints	0 - 0,01	0 - 1

Market

Nordics

Reference service life, product 60 years

Reference service life, building 60 years


LCA: Calculation rules

Declared unit

1kg of steel, cradle-to-gate A1-A3 with options

System boundary

Modules are declared according to NPCR 013 Part B. Declared modules are shown in *Figure 1*. Gray boxes denote modules not declared.

Figure 1: System boundarie

Data quality

General requirements and guidelines concerning the use of generic and specific data and the quality of those are as described in EN 15804: 2012+A1:2013, clause 6.3.6 and 6.3.7., including ISO14044:2006, 4.2.3.6. The data is representative according to temporal, geographical and technological requirements. Databases used have been ecoinvent v3.6. Upstream steel data provided by suppliers. Calculations have been carried out using Simapro v9.

Temporal:

Data for use in module A3 is supplied by the EPD owner and consists of recorded and calculated amounts of specific material and energy consumption. Specific data has been collected for 2019. Generic data has been created or updated within the last 10 years. Any exceptions are documented in the LCA-report.

Geographical:

The product included in this EPD is manufactured in Denmark and Latvia and is representative for the intended market. Best available proximations are used where country specific data are unavailable.

Technological:

Data represents technology in use.

Allocation

The allocation is made in accordance with the provisions of EN 15804. Production activities, energy, water and waste production inhouse is allocated equally among all products through mass allocation. Effects of primary production of recycled materials allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Cut-off criteria

All major raw materials and all the essential energy is included. The production process for raw materials and energy flows that are included with very small amounts (<1% energy, mass, impact) are not included. This cut-off rule does not apply for hazardous materials and substances.

Benefits and loads beyond the system boundary (Module D)

Module D is calculated as net scrap * LCI for scrap, where the scrap LCI is calculated as the credit for avoided primary production of steel, minus the burden of recycling steel scrap to make new steel, multiplied by the process yield (>1kg scrap is needed to make 1kg new steel). LCI for scrap has been provided by worldsteel (Eurofer, 2019; Worldsteel, 2017).

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to user (A4)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Value (l/t)
Truck	44 %	Lorry >32t EURO5	300	0.022 l/tkm	6.6

Scenario for distance to building site according to NPCR 013 Part B.

End of Life (C1, C3, C4)

Benefits and loads beyond the system (D)

	Unit	Value		Unit	Value
Hazardous waste disposed	kg	0	Net new scrap	kg	0.20
Collected as mixed construction waste	kg	0			
Reuse	kg	0.00			
Recycling	kg	0.95			
Energy recovery (C3)	kg	0			
To landfill (C4)	kg	0.05			

End of life scenario

Net new scrap is calculated by substracting the scrap content of outgoing steel from the recycling rate. The average scrap content for European hot-rolled steel is assumed to be 74,6%. Note that outgoing scrap and the parameter for Secondary Material content (SM) differ, wherein the latter accounts for the total amount of scrap needed in the system to fulfill the declared unit.

A 95% recovery rate is assumed, wherein 5% is assumed landfilled - in effect providing a 95% recycling rate. Reuse is not included in this scenario.

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy	Value
				consumption	(I/t)
Waste collection	50 %	Lorry 21t	19	0.39 l/tkm	7.4
Truck	26 %	Lorry 7,5-16t EURO5	278	0.04 l/tkm	12.2

To provide a plausible scenario for transportation to waste processing, a study of Norwegian waste treatment was used as proxy data (Raadal et al., 2009).

LCA: Results

System boundaries (X=included, MND= module not declared, MNR=module not relevant)

- ,		anaa	1,000				loadio	not a	oolalo	a, mi i i	modul		oran	.,		
Pro	duct st	age	Assen	nby stage		Use stage End of life stage							Beyond the system boundaries			
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling- potential
A1	A2	A3	A4	A5	B1	B2	В3	В4	B5	B6	В7	C1	C2	C3	C4	D
х	x	х	х	MND	MND	MND	MND	MND	MND	MND	MND	х	x	х	х	x

Environme	Environmental impact								
Parameter	Unit	A1-A3	A4	C1	C2	C3	C4	D	
GWP	kg CO ₂ -eqv	1.72E+00	2.59E-02	2.15E-02	6.86E-02	2.19E-04	5.30E-05	-3.27E-01	
ODP	kg CFC11-eqv	1.50E-07	5.11E-09	3.87E-09	1.23E-08	2.61E-11	1.77E-11	1.83E-09	
POCP	kg C ₂ H ₄ -eqv	8.21E-04	4.13E-06	4.30E-06	1.14E-05	5.97E-08	1.94E-08	-1.42E-04	
AP	kg SO ₂ -eqv	1.04E-02	8.37E-05	1.63E-04	2.47E-04	1.25E-06	3.95E-07	-6.46E-04	
EP	kg PO₄³-eqv	2.05E-03	1.42E-05	3.51E-05	4.63E-05	2.73E-07	6.81E-08	-7.09E-05	
ADPM	kg Sb-eqv	1.25E-04	5.06E-08	7.21E-09	1.54E-07	2.15E-09	6.10E-11	-1.03E-06	
ADPE	MJ	2.65E+01	4.08E-01	3.09E-01	9.89E-01	2.91E-03	1.51E-03	-4.76E+00	

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

Resource	use								
Parameter	Unit	A1-A3	A4	C1	C2	C3	C4	D	
RPEE	MJ	1.51E+00	6.51E-03	1.66E-03	1.02E-02	1.51E-02	2.80E-05	-2.11E-01	
RPEM	MJ	1.71E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
TPE	MJ	3.22E+00	6.51E-03	1.66E-03	1.02E-02	1.51E-02	2.80E-05	-2.11E-01	
NRPE	MJ	2.27E+01	4.20E-01	3.12E-01	1.01E+00	3.78E-03	1.54E-03	-4.87E+00	
NRPM	MJ	7.48E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
TRPE	MJ	3.02E+01	4.20E-01	3.12E-01	1.01E+00	3.78E-03	1.54E-03	-4.87E+00	
SM	kg	9.52E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
RSF	MJ	0.00E+00							
NRSF	MJ	5.66E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-2.97E-01	
W	m ³	2.10E-02	8.91E-05	4.22E-05	4.22E-05	4.22E-05	1.69E-06	-2.14E-07	

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

End of life	End of life - Waste								
Parameter	Unit	A1-A3	A4	C1	C2	C3	C4	D	
HW	kg	8.65E-02	2.13E-07	1.39E-07	5.10E-07	5.54E-09	1.08E-09	8.35E-17	
NHW	kg	5.00E-01	3.66E-02	3.40E-04	3.46E-02	1.05E-04	1.00E-02	0.00E+00	
RW	kg	6.96E-05	2.95E-06	2.17E-06	7.01E-06	2.12E-08	9.96E-09	0.00E+00	

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

End of life - Output flow

Parameter	Unit	A1-A3	A4	C1	C2	C3	C4	D	
CR	kg	0.00E+00							
MR	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	9.50E-01	0.00E+00	0.00E+00	
MER	kg	0.00E+00							
EEE	MJ	0.00E+00							
ETE	MJ	0.00E+00							

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

Reading example: $9,0 \text{ E}-03 = 9,0^{*}10^{-3} = 0,009$

Additional Norwegian requirements

Greenhous gas emission from the use of electricity in the manufacturing phase

Norwegian production mix from import, medium voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing prosess (A3).

Data source	Amount	Unit
Econinvent v3.6 - Denmark	0.359	kg CO ₂ -eqv/kWh
Econinvent v3.6 - Latvia	0.604	kg CO ₂ -eqv/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list or the Norwegian priority list

The product contains substances given by the REACH Candidate list or the Norwegian priority list that are less than 0,1 % by weight.

The product contain dangerous substances, more then 0,1% by weight, given by the REACH Candidate List or the Norwegian Priority list, see table.

The product contains no substances given by the REACH Candidate list or the Norwegian priority list. The product is classified as hazardous waste (Avfallsforskiften, Annex III), see table.

Indoor environment

No tests have been carried out on the product concerning indoor climate - Not relevant.

Carbon footprint

Carbon footprint has not been worked out for the product.

Bibliography	
ISO 14025:2010	Environmental labels and declarations - Type III environmental declarations - Principles and procedures
ISO 14044:2006	Environmental management - Life cycle assessment - Requirements and guidelines
EN 15804:2012+A1:2013	Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products
ISO 21930:2007	Sustainability in building construction - Environmental declaration of building products
Jennssen, M.M. (2020)	LCA report for CSK Stålindustri A/S
NPCR 013:2019	Part B for Steel and Aluminium products
Raadal et al. (2009)	Klimaregnskap for avfallshåndtering. Fase I og II: Glassemballasje, metallemballasje, papir, papp, plastemballasje, våtorganisk avfall, treavfall og restavfall fra husholdninger. ISBN: 82- 8035-073-X.

	Publisher/Program operator	Phone:	+47 23 08 80 00
epd-norge.no	The Norwegian EPD Foundation		
The Norwegian EPD Foundation	Post Box 5250 Majorstuen, 0303 Oslo	e-mail:	post@epd-norge.no
<u>®</u>	Norway	web	epd-norge.no
	Owner of the declaration	Phone:	+45 25 24 66 36
CSK	CSK Stålindustri A/S	Fax	
	Industrivej 7, DK-770	e-mail:	jpf@csk.dk
STEEL	Denmark	web	csk.dk
	Author of the Life Cycle Assessment	Phone:	+47 41 79 94 17
or asplan viak	Michael M. Jenssen	Fax	
aspian viak	Asplan Viak AS	e-mail:	asplanviak@aplanviak.no
	Abels gate 9, 7030 Trondheim, Norway	web	asplanviak.no

ver2 201

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804

Owner of the declaration:
Program operator:
Publisher:
Declaration number:
Registration number:
ECO Platform reference number:
Issue date:
Valid to:

CSK Stålindustri A/S The Norwegian EPD Foundation The Norwegian EPD Foundation NEPD-2694-1395-EN NEPD-2694-1395-EN

CE-Mærket stål komponenter CE Marked steel components

CSK STEEL

CSK Stålindustri A/S

22.02.2021 22.02.2026

General information

Product CE-Mærket stål komponenter Beams UNP-UPE-HEA-HEB-IPE-HEM

Program operator

The Norwegian EPD FoundationPost Box 5250 Majorstuen, 0303 Oslo, NorwayPhone:(+47) 23 08 80 00e-mail:post@epd-norge.no

Declaration number

NEPD-2694-1395-EN

ECO Platform reference number

Product Category Rules

EN 15804:2012 + A1:2013 serves as core PCR NPCR 013:2019 Part B for Steel and aluminium construction products

Statement of liability

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit

Declared unit with options (A1-A4, C1-C4, D): 1kg of steel, cradle-to-gate A1-A3 with options

Functional unit

-

Verification

The CEN Norm EN 15804 serves as the core PCR. Independent verification of the declaration and data, according to ISO14025:2010

internal

Third party verifier: U. M. Wirersen

external

Ole M. K. Iversen, LCA.no AS Independent verifier approved by EPD Norway

Owner of the declaration

CSK Stålindustri A/S Contact person: Phone: e-mail:

Jens Peter Frimor +45 25 24 66 36 jpf@csk.dk

Manufacturer

CSK Stålindustri A/S Industrivej 7, DK-770 Phone: +45 25 24 66 36 e-mail: jpf@csk.dk

Place of production

Denmark, Thisted Latvia, Tukums

Management system

EN ISO 9001 EN ISO 14001 BS/EN 1090

Organisation number

20216883

Issue date

22.02.2021

Valid to

22.02.2026

Year of study 2020

Comparability

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

The EPD has been worked out by

Michael M. Jenssen, Asplan Viak AS

Michael M. Lenn asplan viak

Approved

Håkon Hauan

Håkon Hauan Managing Director of EPD-Norway

Product

About CSK Steel

CSK Steel is a specialized global steel manufacturer driven by close relations with our customers. CSK Steel is certified to supply CE marked steel structures for the European market in all Execution Classes (EXC1-EXC4).

Our quality assurance system is based on ISO 3834, and we are certified according to 1090-1. External quality audits are performed on an ongoing basis to ensure that our certification is always valid and up-to-date.

At CSK Steel we strive to always offer - and deliver - high-quality steel structures and service, ensured by the continuous development and improvement of our quality assurance system and policies.

We are also certified according to international standards for occupational health and safety DS/OHSAS 18001:2007 / ISO 45001:2018. Our environmental management system is certified according to ISO 14001:2015.

Product Variation

The declared product is produced by CSK in Denmark and Latvia and the results are a weighted average of the two production units; variance is less than 10% between production sites for key environmental parameters.

Product description

CE marked steel components are structural steel beams (UNP-UPE-HEA-HEB-IPE-HEM) manufactured by CSK per customer specification. Incoming hot-rolled profiles are first sand blasted, then cut and welded to the desired shape. Products are then surface treated before transportation to building site.

Technical data

Dimensions: IPE 80-600, HEA/B/M 100-600, UNP/UPE 80-400, L 40-200, L 65x50 -200x150, T 30-140 and wide steels:160-500, t=5-40. Steel grade ≤ S355. EN 10025 and EN1090-2 standards are applied.

Product specification

Materials	kg	%
Alloyed steel	0,93 - 0,99	93-99
Zinc	0 - 0,06	0 - 6
Paints	0 - 0,01	0 - 1

Market

Nordics

Reference service life, product 60 years

Reference service life, building 60 years

LCA: Calculation rules

Declared unit

1kg of steel, cradle-to-gate A1-A3 with options

System boundary

Modules are declared according to NPCR 013 Part B. Declared modules are shown in *Figure 1*. Gray boxes denote modules not declared.

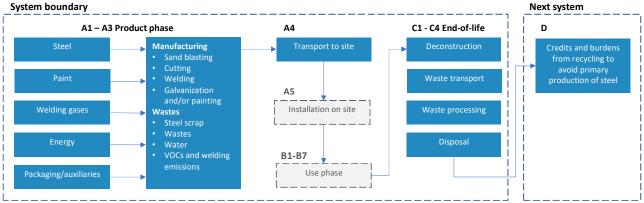


Figure 1: System boundaries

Data quality

General requirements and guidelines concerning the use of generic and specific data and the quality of those are as described in EN 15804: 2012+A1:2013, clause 6.3.6 and 6.3.7., including ISO14044:2006, 4.2.3.6. The data is representative according to temporal, geographical and technological requirements. Database used has been ecoinvent v3.6. Calculations have been carried out using Simapro v9. Upstream steel data from supplier EPDs:

EPD	EPD programme	Product type	Data age
1	IBU	Hot-rolled / structural section steel	<10 years
2	AENOR	Hot-rolled / structural section steel	<10 years
3	IBU	Hot-rolled / structural section steel	<5 years
4	IBU	Hot-rolled / structural section steel	<5 years

Allocation

The allocation is made in accordance with the provisions of EN 15804. Production activities, energy, water and waste production inhouse is allocated equally among all products through mass allocation. Effects of primary production of recycled materials allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Cut-off criteria

All major raw materials and all the essential energy is included. The production process for raw materials and energy flows that are included with very small amounts (<1% energy, mass, impact) are not included. This cut-off rule does not apply for hazardous materials and substances.

Benefits and loads beyond the system boundary (Module D)

Module D is calculated as net scrap * LCI for scrap, where the scrap LCI is calculated as the credit for avoided primary production of steel, minus the burden of recycling steel scrap to make new steel, multiplied by the process yield (>1kg scrap is needed to make 1kg new steel). LCI for scrap has been provided by worldsteel (Eurofer, 2019; Worldsteel, 2017).

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from produc	ction place to user (A4)	
		-

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Value (l/t)
Truck	44 %	Lorry >32t EURO5	300	0,022 l/tkm	6.6

Scenario for distance to building site according to NPCR 013 Part B.

End of Life (C1, C3, C4)

	Unit	Value		
Hazardous waste disposed	kg	0		Ne
Collected as mixed construction waste	kg	0		
Reuse	kg	0.00		
Recycling	kg	0.95]	
Energy recovery (C3)	kg	0		
To landfill (C4)	kg	0.05		

Benefits and loads beyond the system (D)

	Unit	Value
Net new scrap	kg	-0.04

End of life scenario

Net new scrap is calculated by substracting the scrap content of outgoing steel from the recycling rate. The weighted average scrap content is 99% from suppliers. Note that outgoing scrap and the parameter for Secondary Material content (SM) differ, wherein the latter accounts for the total amount of scrap needed in the system to fulfill the declared unit.

A 95% recovery rate is assumed, wherein 5% is assumed landfilled - in effect providing a 95% recycling rate. Reuse is not included in this scenario.

Transport to waste processing (C2)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy	Value
				consumption	(I/t)
Waste collection	50 %	Lorry 21t	19	0.39 l/tkm	7.4
Truck	26 %	Lorry 7,5-16t EURO5	278	0.04 l/tkm	12.2

To provide a plausible scenario for transportation to waste processing, a study of Norwegian waste treatment was used as proxy data (Raadal et al., 2009).

LCA: Results

Syste	System boundaries (X=included, MND= module not declared, MNR=module not relevant)																		
Pro	duct sta	age	Assen	nby stage	e Use stage End of life stage						Use stage End of life stage								
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	•	Reuse-Recovery-Recycling- potential		
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	СЗ	C4		D		
x	х	Х	х	MND	MND	MND	MND	MND	MND	MND	MND	х	х	х	х		х		

Environme	Environmental impact													
Parameter	Unit	A1-A3	A4	C1	C2	C3	C4	D						
GWP	kg CO ₂ -eqv	1.29E+00	2.59E-02	2.15E-02	6.86E-02	2.19E-04	5.30E-05	6.86E-02						
ODP	kg CFC11-eqv	5.24E-08	5.11E-09	3.87E-09	1.23E-08	2.61E-11	1.77E-11	-3.84E-10						
POCP	kg C ₂ H ₄ -eqv	4.59E-04	4.13E-06	4.30E-06	1.14E-05	5.97E-08	1.94E-08	2.98E-05						
AP	kg SO ₂ -eqv	7.19E-03	8.37E-05	1.63E-04	2.47E-04	1.25E-06	3.95E-07	1.36E-04						
EP	kg PO₄³⁻-eqv	1.03E-03	1.42E-05	3.51E-05	4.63E-05	2.73E-07	6.81E-08	1.49E-05						
ADPM	kg Sb-eqv	1.14E-04	5.06E-08	7.21E-09	1.54E-07	2.15E-09	6.10E-11	2.17E-07						
ADPE	MJ	1.63E+01	4.08E-01	3.09E-01	9.89E-01	2.91E-03	1.51E-03	9.98E-01						

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

Resource	use								
Parameter	Unit	A1-A3	A4	C1	C2	C3	C4	D	
RPEE	MJ	1.35E+00	6.51E-03	1.66E-03	1.02E-02	1.51E-02	2.80E-05	4.43E-02	
RPEM	MJ	1.71E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
TPE	MJ	3.06E+00	6.51E-03	1.66E-03	1.02E-02	1.51E-02	2.80E-05	4.43E-02	
NRPE	MJ	1.06E+01	4.20E-01	3.12E-01	1.01E+00	3.78E-03	1.54E-03	1.02E+00	
NRPM	MJ	7.48E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
TRPE	MJ	1.81E+01	4.20E-01	3.12E-01	1.01E+00	3.78E-03	1.54E-03	1.02E+00	
SM	kg	1.15E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
RSF	MJ	0.00E+00							
NRSF	MJ	5.66E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.24E-02	
W	m³	3.74E-03	8.91E-05	4.22E-05	4.22E-05	4.22E-05	1.69E-06	4.50E-08	

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

End of life - Waste									
Parameter	Unit	A1-A3	A4	C1	C2	C3	C4	D	
HW	kg	8.87E-02	2.13E-07	1.39E-07	5.10E-07	5.54E-09	1.08E-09	-1.75E-17	
NHW	kg	2.73E-02	3.66E-02	3.40E-04	3.46E-02	1.05E-04	1.00E-02	0.00E+00	
RW	kg	2.52E-04	2.95E-06	2.17E-06	7.01E-06	2.12E-08	9.96E-09	0.00E+00	

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

End of life - Output flow

	Output nom								
Parameter	Unit	A1-A3	A4	C1	C2	C3	C4	D	
CR	kg	3.40E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
MR	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	9.50E-01	0.00E+00	0.00E+00	
MER	kg	0.00E+00							
EEE	MJ	0.00E+00							
ETE	MJ	0.00E+00							

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

Reading example: $9,0 \text{ E}-03 = 9,0^{*}10^{-3} = 0,009$

Additional Norwegian requirements

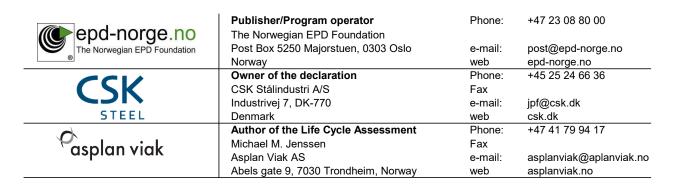
Greenhous gas emission from the use of electricity in the manufacturing phase

Norwegian production mix from import, medium voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing prosess (A3).

Data source	Amount	Unit
Econinvent v3.6 - Denmark	0.359	kg CO ₂ -eqv/kWh
Econinvent v3.6 - Latvia	0.604	kg CO ₂ -eqv/kWh

Dangerous substances

- The product contains no substances given by the REACH Candidate list or the Norwegian priority list
- The product contains substances given by the REACH Candidate list or the Norwegian priority list that are less than 0,1 % by weight.
- The product contain dangerous substances, more then 0,1% by weight, given by the REACH Candidate List or the Norwegian Priority list, see table.
- The product contains no substances given by the REACH Candidate list or the Norwegian priority list. The product is classified as hazardous waste (Avfallsforskiften, Annex III), see table.


Indoor environment

No tests have been carried out on the product concerning indoor climate - Not relevant.

Carbon footprint

Carbon footprint has not been worked out for the product.

Bibliography	
ISO 14025:2010	Environmental labels and declarations - Type III environmental declarations - Principles and procedures
ISO 14044:2006	Environmental management - Life cycle assessment - Requirements and guidelines
EN 15804:2012+A1:2013	Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products
ISO 21930:2007	Sustainability in building construction - Environmental declaration of building products
Jennssen, M.M. (2020)	LCA report for CSK Stålindustri A/S
NPCR 013:2019	Part B for Steel and Aluminium products
Raadal et al. (2009)	Klimaregnskap for avfallshåndtering. Fase I og II: Glassemballasje, metallemballasje, papir, papp, plastemballasje, våtorganisk avfall, treavfall og restavfall fra husholdninger. ISBN: 82- 8035-073-X.

